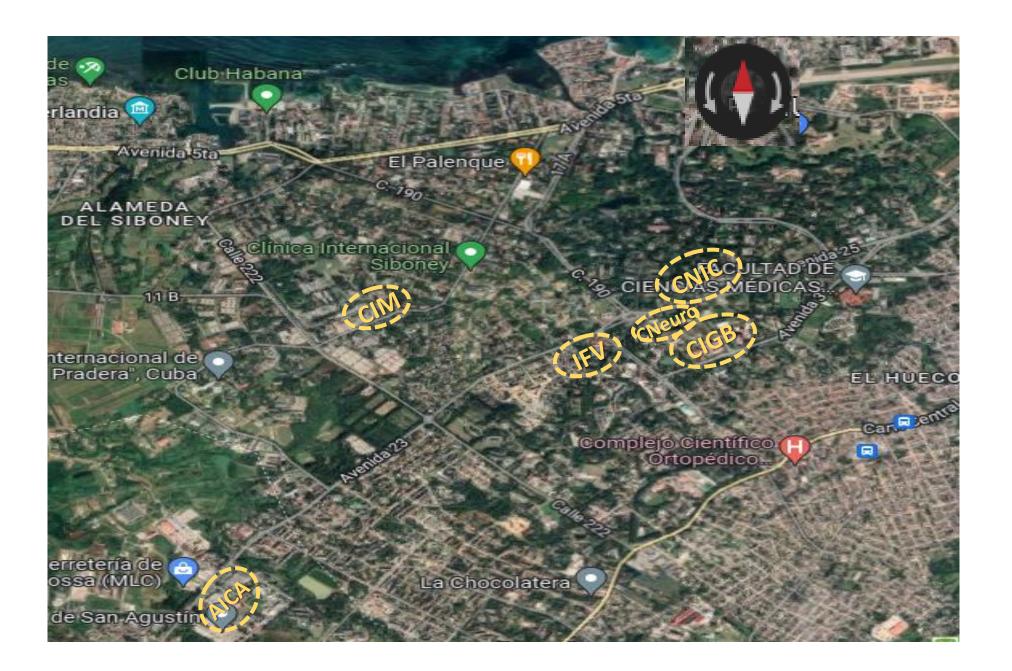
CENTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY

32 Cuban Enterprises

80 Production Lines


+20000 Employees

+40 Exportations to countries

740Marketing approvals in 53 countries

We focus on key areas of the sectors

BIOMEDICAL

Diagnosis, treatment and prevention of infectious, autoimmune, cardiovascular, cerebrovascular, oncological, dermatological, hematological, neurological and gastrointestinal diseases, diabetes and scarring

VETERINARIAN

Diagnosis, prevention, control and treatment of various infectious diseases, as well as in animal nutrition

AGRICULTURAL

Control of pests and fungal and viral diseases that affect plants

INDUSTRIAL

We have products for use in the food industry

MAIN PRODUCTS

VACCINES

Pentavalent vaccine Rec. Hepatitis B vaccine Conjugated Hib vaccine

PRODUCTS

Rec. IFN Alpha-2b

Rec. GCSF (Hebervital)

HeberNasvac

HeberFERON (IFN α and γ)

Heberprot-P

Rec. IFN gamma

Rec. Streptokinase

Proctokinase

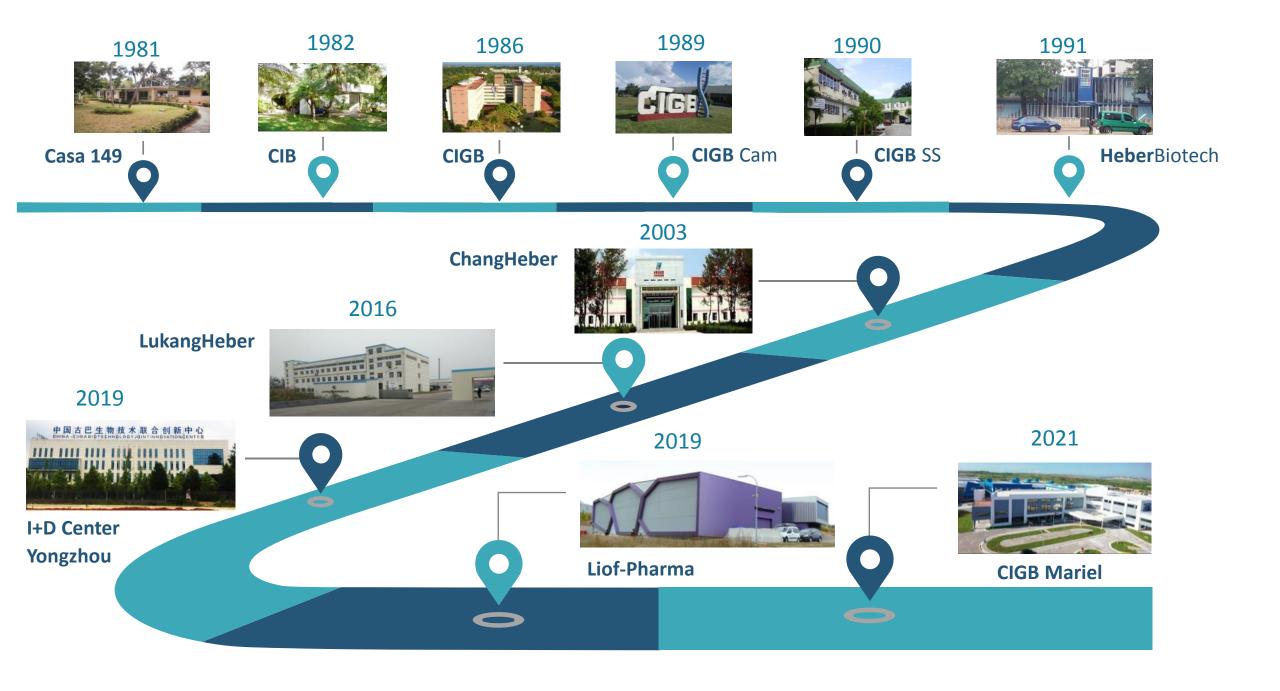
Heberon

Diagnostic kits

Jusvinza

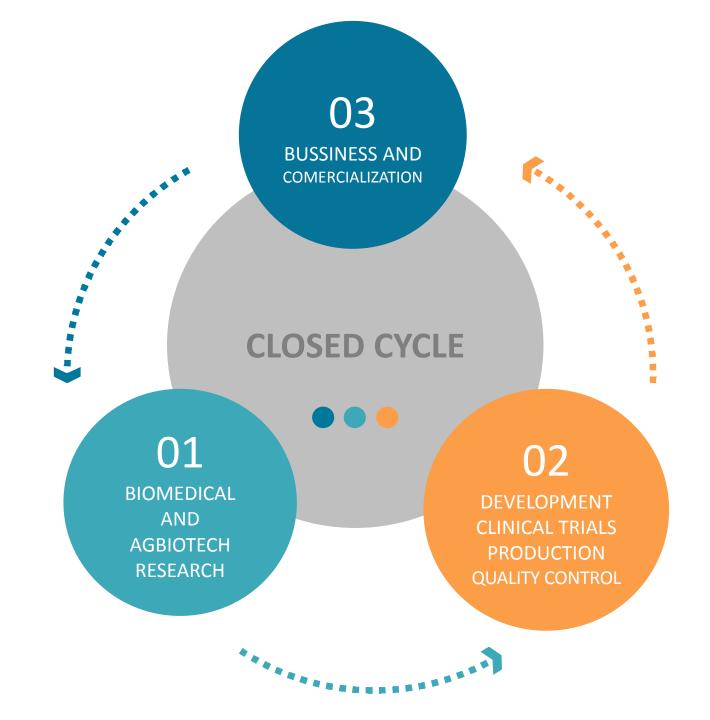
Abdala

PRODUCTS


Rec. tick vaccine (GAVAC)

Bionematicide

Acuabio

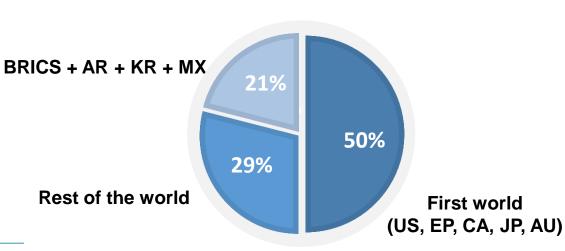


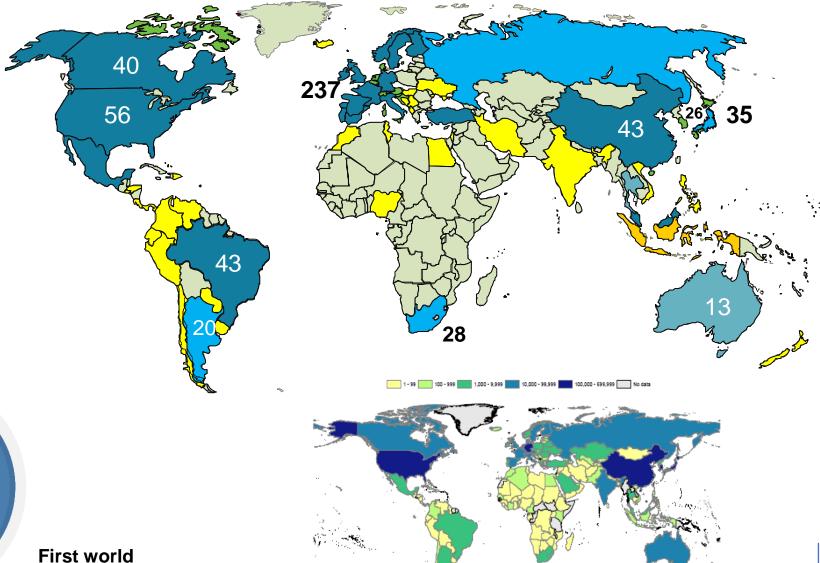
CENTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY

It is dedicated to scientific research and innovation, development, production and marketing of **products**, **applications**, **medicines and vaccines** with high added value, for the biomedical, veterinary, agricultural, aquacultural and industrial sectors, for **one health**.

Personnel: 1600

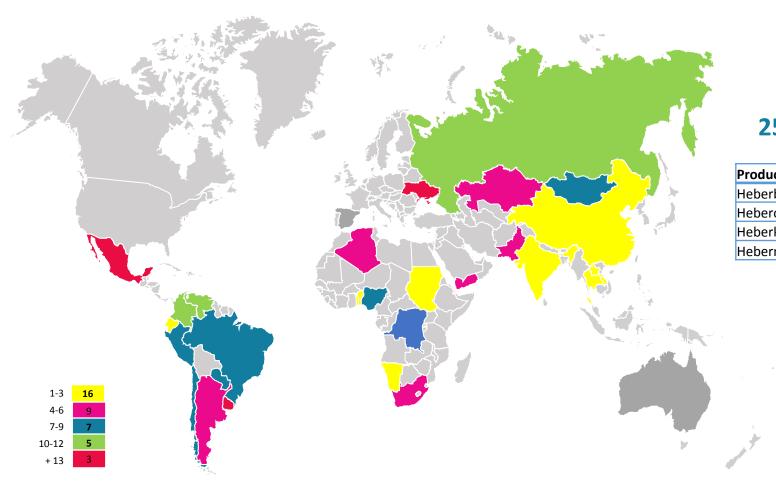
Facilities: 70 000 m²


International Patent Status



62 Inventions

768 Applications and total patents


75% Patents granted

Product Marketing Authorizations abroad

252 approvals products in 57 countries

Product	No. Reg.	Product	No. Reg.	Product	No. Reg.
Heberbiovac HB	67	Hebervital	11	Heberprot-P	24
Heberon Alfa R	61	Heberitro	7	Trivac HB	4
Heberkinasa	22	Quimi-Hib	16	Acuabio 1	1
Hebermin	14	Gavac	4	Heberprenta-L	4

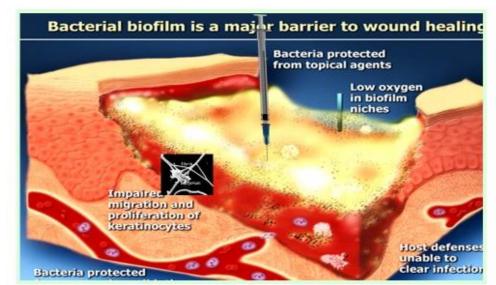
Vaccines, drugs and other products commercialized

Range of Products Developed

Biopharmaceutical Projects

...... continued https://www.cigb.edu.cu/en/project_category/bioph_pr

Innovative product

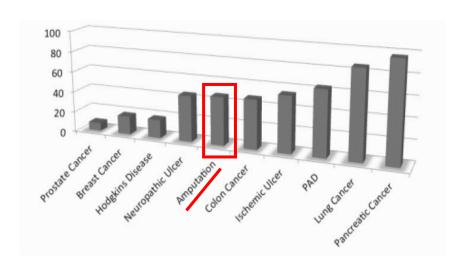


Recombinant human Epidermal Growth Factor (EGF)

Worldwide unique product for the treatment of patients with advanced diabetic foot ulcers with high risk of amputation.

Patents Granted: United States, European Union, Australia, Hong Kong, Singapore, South Korea, South Africa, Russia, China, India, Indonesia, Ukraine, Mexico, Malaysia and Cuba.

RATIONALE OF HEBERPROT-P INFILTRATION METHOD



Severe DFU is also a life-threatening problem, greater than some types of cancer

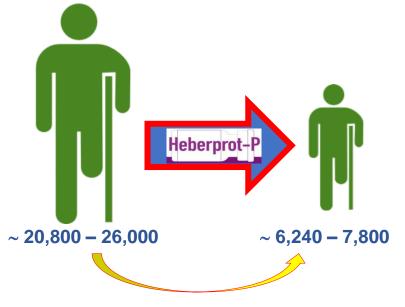
of diabetic patients would be affected by DFU
of DFU patients never healing the ulcer with standard therapy
of DFU patients would be amputated as consequence of the DFU
of amputee patients died in 5-year, one of the most severe conditions

For effective healing of diabetic foot ulcers (DFU)

LESIONS TREATED WITH HEBERPROT-P®

Market Authorization in 28 countries.

More than 390,000 patients treated in Cuba and abroad.


Diabetes and Diabetic Foot Ulcer

	Population	Diabetic Adults	Amputations	Rate
USA	320,000,000	33,000,000	153,000	0.005
France	68,000,000	2,331,123	8,509	0.004
Italy	60,000,000	2,450,000	8,943	0.004
Greece	11,000,000	405,000	1,478	0.004
Iran		5,200,000	20,800	0.005
	85,000,000		26,000 [*]	0.004
		DFU-related deaths	2,080 – 2,600 [*]	

Diabetes in Iran: Prospective Analysis from First Nationwide Diabetes Report of National Program for Prevention and Control of Diabetes: https://www.nature.com/articles/s41598-017-13379-z

An national **Heberprot-P** program covering the whole population of advanced DFU patients in Iran might putatively save every year:

- $\sim 14,000 20,000$ lower limbs
- ~ 1,450 1,820 lives

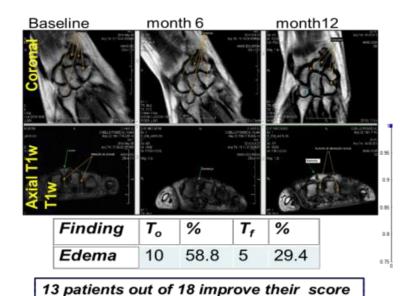
^{57 – 71} DFU amputations/day in Iran

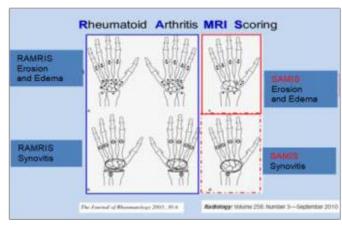
^{*} Estimated

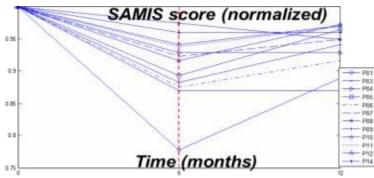
Innovative product

HEBERFERON induces complete responses in advanced BCC and SCC

Before After After

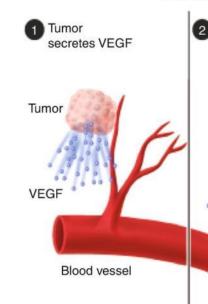



Innovative project


CIGB 814

For rheumatoid arthritis treatment Current status: clinical trial phase II

Clinical Trial assisted by Magnetic resonance imaging

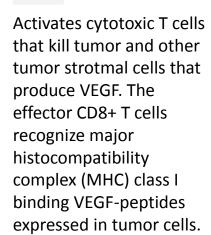

blood vessel

movement to tumor

Innovative project

HeberSaVax

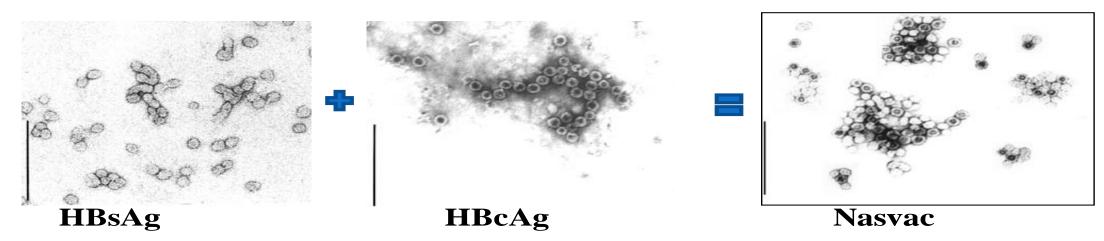
mediates humoral and cellular responses in cancer indications Current status: Clinical trial phase II



VEGF is overexpressed through the whole tumor "life cycle" and metastasis appearance and with bad patient prognosis.

HeberSaVax induces anti-**VEGF** antibodies that block VEGF-VEGFR2 interaction and inhibit the pro-angiogenic and immune suppressive effects of this growth factor.

HeberNASVAC


Novel therapeutic vaccine for Chronic Hepatitis B

Composition:

HBsAg (adw2 subtype, *Pichia pastoris* expressed recombinant antigen) HBcAg (183 aa full antigen, produced in *E. coli*) Simple mixture in saline phosphate buffer.

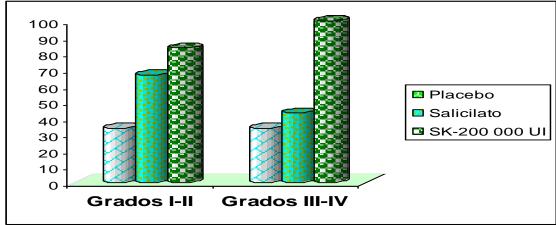
Immunol and Cell Biol (2004)

Both Nasvac antigens are VLP

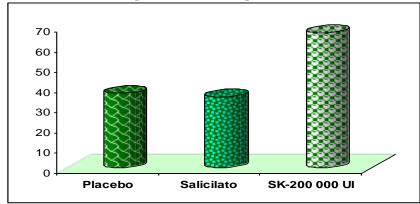
HBsAg: high lipid content

HBcAg: super-antigen, containing bacterial nucleid acid (ARN)

- ➤ Both antigens form aggregates, that are in the range from 20 to 120 nm, with a mean size of 55±5 nm.
- > This vaccine is for intranasal administration exploiting the immune resources presented at mucosal tissues.


Proctokinase

Treatment of Hemorrhoids with Recombinant Streptokinase Suppository


Hemorrhoids are one of the rectal pathologies with the highest worldwide incidence, 50 % of people with more than 50 years old will develop hemorrhoids.

Total response after 5^{to} day , according prolapsus grade

Differences between Proctoquinasa (SK 200 000 UI) vs. Placebo, in III-IV Grades.

Total response at day 5th

Difference between Proctoquinasa (SK 200 000 UI) vs. Placebo.

COVID-19 Therapeutic products

Covid positive patients, early stage.

Combination of recombinant human interferon alpha 2b and gamma

Covid positive patients, early stage.

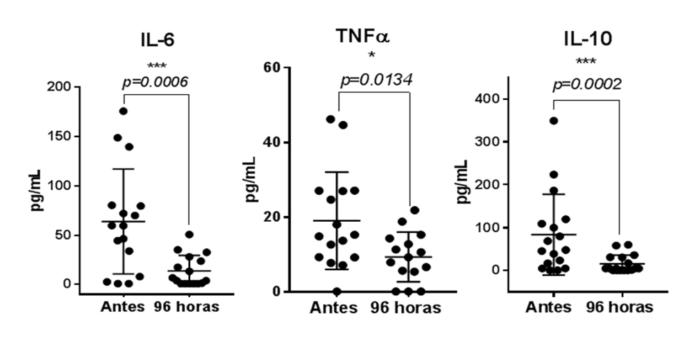
Nasal recombinant interferon alpha

Persons in risk, and COVID-19 positive patients, early stage.

Anti-inflammatory peptide

Persons with COVID-19 in serious/critical condition.

Anti-inflammatory peptide for the treatment of COVID-19 patients in serious/critical condition



Jusvinza reduces citoquine levels associated with hyperinflammation in COVID-19 patients

Granted **Emergency Use Authorization** in Covid-19 by the Cuban Regulatory Agency (CECMED)

Molecular and cellular characterization molecular of Jusvinza effect on COVID-19 patients

Anti-inflammatory peptide for the treatment of COVID-19 patients in serious/critical condition

- The use of Jusvinza in the national COVID protocol has been crucial in mortaility reduction
- More than 6,000 COVID patients treated

Obstetric

In ICU N = 124

Crítical condition: 60

Serious condition: 64

■ Death: 16

Recovered: 108 (87,09 %)

Pediatric

In ICU N = 118

Death: 4 (3 PCR -)

Data from the Ministry of Health

(January – August 2021)

ICU patients	Treated with Jusvinza	Recovered
871	676	575

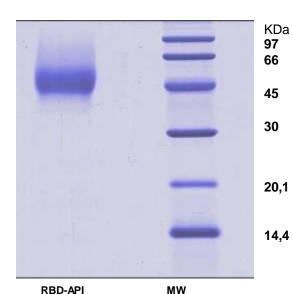
Pacients treated with Jusvinza

Pacients recovered

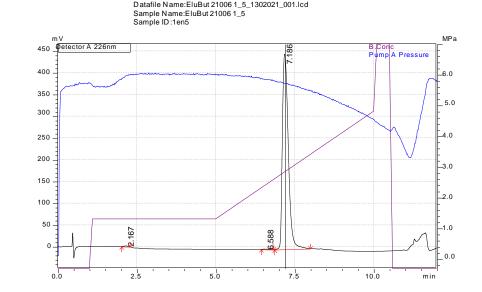
Nasal recombinant interferon alpha, for persons in risk and early stage COVID-19 positive patients

More than 1 million units delivered to the Ministry of Health

Abdala the first Latin American vaccine against COVID-19


- CIGB has wide experience in the production of vaccines, including those based on subunit proteins (VPs).
- VPs are safe, non-toxic, without risk of pathogenicity.
- VPs are very stable, storage and cold chain during vaccination do not need freezing.

TENTRO DE INGENIERÍA GENÉTICA Y BIOTECNOLOGÍA



- Abdala is based on the receptor binding domain (RBD) of the spike protein of the SARS-CoV-2 virus. Abdala's production platform is based on *Pichia pastoris* yeast, which has been used in the Heberbiovac HB® preventive recombinant vaccine against the hepatitis B virus, registered in more than 30 countries and certified by the WHO.
- Patent Number: CU 2020-0081 "Proteína quimérica que comprende el dominio de unión al receptor de la proteína de la espiga de coronavirus y composiciones que la comprenden". Submission Date: 4.11.2020

Abdala: Three doses, efficacy 92.28%

EMERGENCY USE AUTHORIZATION (EUA)

Product with Emergency Use
Authorization granted by the
Center for State Control Of
Medicines, Equipments and
Medical Devices (Cuban
Regulatory Authority, CECMED).
Date of issue: July 9, 2021.

Pediatric application extended use from 2 years old.

Date of issue: October 27, 2021.

BOOSTER DOSE

Authorization for the administration as a **booster dose**, starting 6 months after completing the immunization scheme against COVID-19 approved in Cuba.

EFFICACY

92.28 % against symptomatic COVID-19.

100 % at preventing the severe systemic disease.

100 % at preventing death in immunized patients.

Safety, Immunogenicity and Efficacy

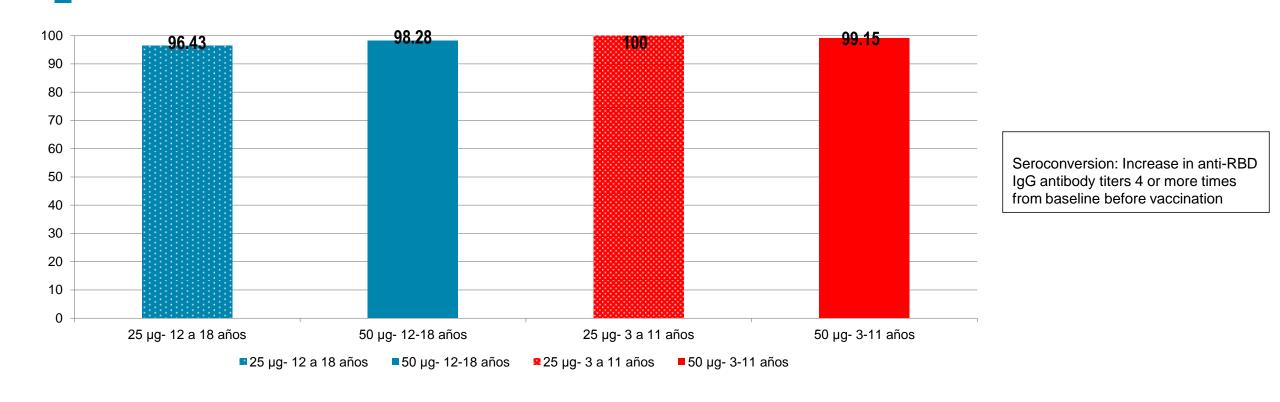
Phase III clinical trial, multicenter, placebo-controlled, randomized and double-blind in order to evaluate the efficacy. More than 48,000 subjects enrolled.

Summary of Clinical Trials

Study Name Trial Registration	Phase Type (primary outcome)*	Location	Participants & Ages eligible	Groups of study	Schedule	Start day/ Status
Abdala Phase I/II RPCEC 00000346	Phase I/II Randomized, double blinded, placebo controlled trial	Cuba (Santiago Cuba province)	Phase 1: 132 healthy participants 18- 54 years	10 101	Three groups receiving 3 dose at 0-14-28 days and the 3 other at 0-28-56 days	Started: Dec 7, 2020 Complete
00000340	Safety and immunogenicity		Phase 2: 600 healthy participants 18-80 years	· · · · · · · · · · · · · · · · · · ·	3 doses at 0-14-28 days	Started: February 7, 2021 Complete
Abdala Phase III RPCEC 00000359	•	Cuba (Santiago Cuba/ Granma /Guantanamo provinces)	48 290 participants 18-80 years	2 groups of volunteers receiving 50 µg/ placebo (1:1)	3 doses at 0-14-28 days	Started: March 22, 2021 Complete***
Ismaelillo RPCEC	Phase I/II Multicenter	Cuba (Camaguey	Phase I: 88 healthy children 3-18 years	2 groups of volunteers receiving 25 μg/ 50 μg (1:1)	3 doses at 0-14-28 days	Started: July 15, 2021 Complete
00000381	randomized, double blinded, Safety and immunogenicity	province)	Phase II: 504 healthy children 3-18 years	2 groups of volunteers receiving 25 μg/ 50 μg (1:1)	3 doses at 0-14-28 days	Started: July 26, 2021 Complete

Emergency Use Authorization on July 9th, granted by Cuban NRA: CECMED

✓ More than 30 million doses had been delivery to MOH

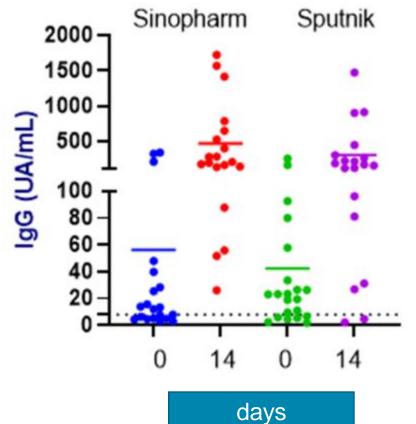


- ✓ Studies of interventions in high risk cohorts such as pregnancy woman
- ✓ Population intervention in groups and territories of risk
- ✓ Massive vaccination

Abdala

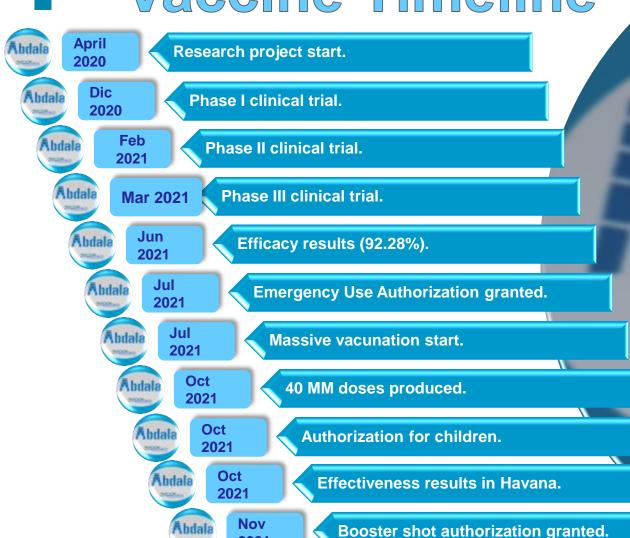
In children high percentages of SEROCONVERSION (main variable of the study)

✓ The hypothesis for the main variable of immunogenicity is fulfilled in both strata, with no significant differences between the study groups in this variable.



Abdala response durability and as a booster to others vaccines

Abdala as a booster of subjects immunized with Sputnik and Sinopharm vaccines



ABDALA Covid-19 Vaccine Timeline

2021

2021

Abdala

TE INGENIERÍA GENÉTICA
Y BIOTECNOLOGÍA

8 MM people vaccinated, 24 MM doses.

Abdala: Granted emergency use authorization in several countries

and massively used in vaccination campaings abroad.



Åbdala

First nasally-administered COVID-19 vaccine candidate

- Recent publications in important scientific journals in the world, as well as relevant international immunology specialists, have pointed out the great prospects and potential advantages of nasal vaccines to combat the COVID-19 pandemic. However, currently there are only 11 vaccine candidates in clinical research phases with the intention of being used by nasal administration, among which Mambisa has been recognized.
- Mambisa vaccine candidate is one of the immunogens for nasal use against COVID-19 with the most advanced research at this time in the world, endorsed of high security because it is based on protein antigens produced on a platform with a history of safe and effective use for over 25 years.

Mambisa: nasally-administered COVID-19 vaccine candidate

RELEVANT FEATURES

- Stimulates immunity in the nasal passages, site of entry of SARS-CoV-2 virus.
- Based on recombinant proteins produced in a safe and effective technological platform in use for over 25 years.
- First protein vaccine candidate for nasal use against COVID-19 that began a phase of clinical studies in humans in the world.

- Induce immunological response both at mucosal and systemic level
- Booster for convalescent subjects only one dose.
- Booster dose for other vaccines.
- IMPD is already submitted to the NRA
- It is a combination of two recombinant proteins: the RBD protein from the spike of the SARS-CoV-2 virus, and the protein from the nucleocapsid of the hepatitis B virus.

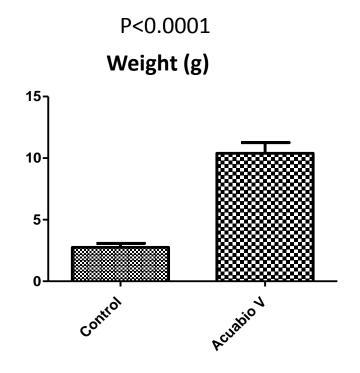
Previous research by the CIGB has shown that the protein from the hepatitis B virus nucleocapsid has a powerful adjuvant effect in stimulating nasal immunity, which led to its use in the production and sanitary registration of the HeberNasvac therapeutic vaccine against hepatitis B in 2015.

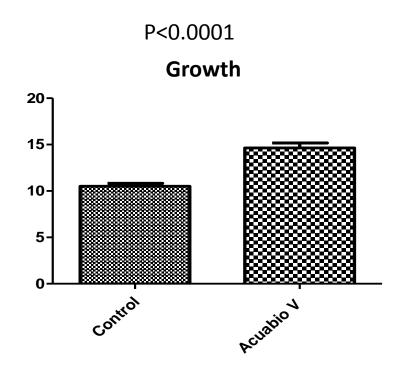
Project portfolio, animal biotechnology

Project	Therapeutic Area	Research	Phase I	Phase II	Phase III	Record
CIGB-552vet	Veterinary					
Acuabio IV	Aquaculture					
Cunvac: Recombinant vaccine candidate against rabbit haemorrhagic disease	Veterinary					
Salvac: Vaccine candidate against sea lice, an ectoparasite of salmonids	Aquaculture					
P0 vaccine: Protein-Based Tick Vaccine Candidate	Veterinary					
Vaccine candidate for biological immunocastration	Veterinary					
Antimicrobial peptides	Veterinary					

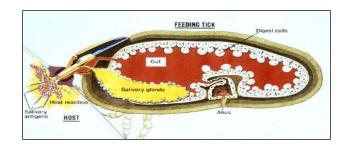
https://www.cigb.edu.cu/en/project_category/vet_project/

Acuabio V

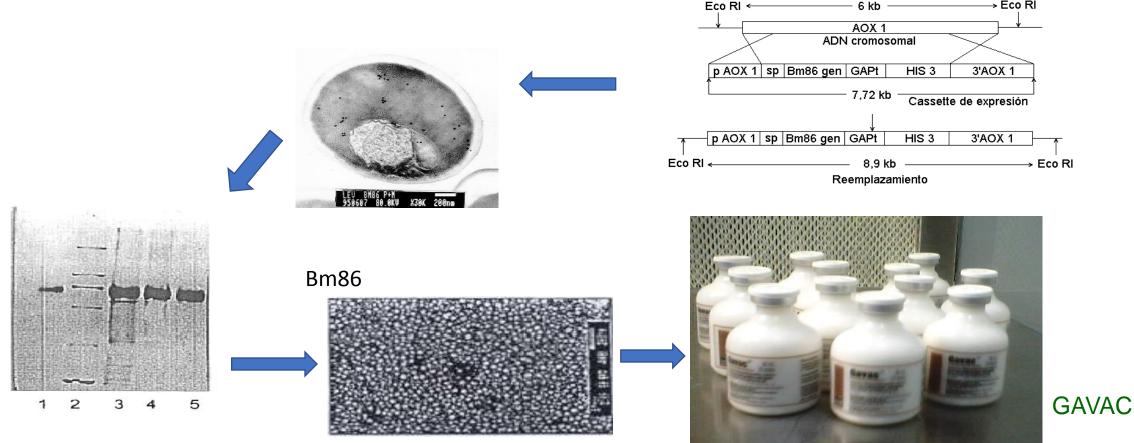



alth boostor

Aquatic species growth and health booster


Impact of Acuabio V application on shrimp post-larvae

GAVAC: Vaccine against ticks



Bm86 gene obtained from gut of *Rhipicephalus* microplus tick

Inserted in Pichia pastoris strain

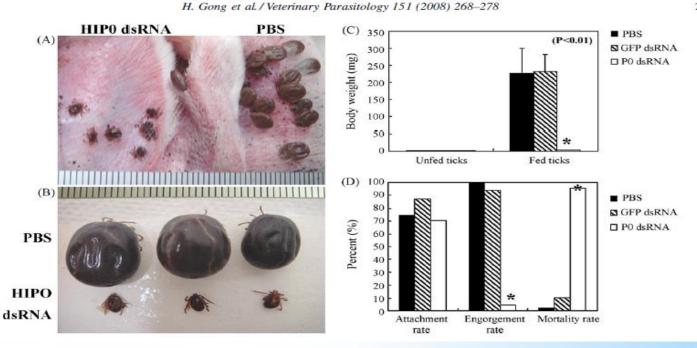
Granted MA in Cuba and several countries

PO, a new antigen against ticks

www.elsevier.com/locate/vetpar

veterinary

parasitology


Veterinary Parasitology 151 (2008) 268-278

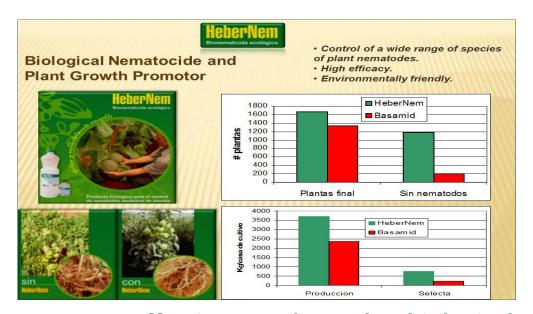
Gene silencing of ribosomal protein P0 is lethal to the tick *Haemaphysalis longicornis*

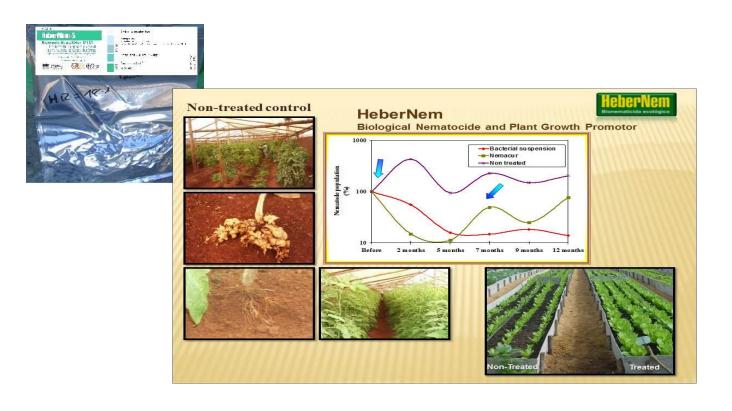
Haiyan Gong^a, Min Liao^b, Jinlin Zhou^a, Tekeshi Hatta^a, Penglong Huang^a, Guohong Zhang^a, Hirotaka Kanuka^a, Yoshifumi Nishikawa^a, Xuenan Xuan^a, Kozo Fujisaki^{a,b,*}

RNA interference in *Haemaphysalis longicornis* tick

PO is a protein (a ribosome structural component), essential for cell viability, present in all organisms.

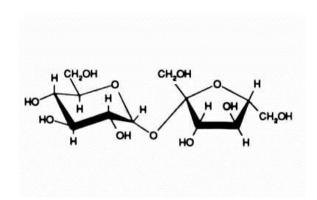
275

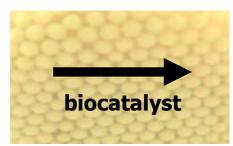

Project portfolio, plant biotechnology

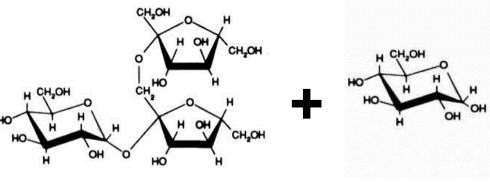

	Therapeutic		Pilot scale	Field	
Project	Area	Research	development	trials	Record
Genetic improvement of maize with biotechnological tools to sustainably increase yields in Cuba	Agriculture				
Highly thermostable biocatalyst enzymes for the production of invert syrup from sucrose	Industrial enzymes				
Obtaining soybean plants that carry the nmdef02 defensin gene and its evaluation against the Phakopsora pachyrhizi fungus	Agriculture				
Plants as bioreactors	Agriculture				
CIGB-42: for the control of infectious diseases in plants	Agriculture				
Control of geminivirus diseases in plants	Agriculture				
Transgenesis in plants	Agriculture				

HeberNem

an effective biocontrol of nematodes and a biofertilizer






- Greater effectiveness than other biological control methods and comparable to chemical nematocides.
- -Scalable for industrial production.
- Broad spectrum of action against nematode species and effective against larvae and eggs.
- Compatible with other biologicals and chemicals.
- -Environmental friendly biological control and...
- -Also a growth promoter.

Enzymatic Technology for FOS* **Production from Sucrose**

sucrose + sucrose

1-kestose (natural prebiotic)

Natural ways of FOS (inulin) consumption

Onion (2.8%), Garlic (1.0%), Barley (0.7%) Banana (0.3%), others

Vegetarian diet $\Rightarrow \leq 2$ g fructans / day

Alternative ways of FOS (inulin) consumption

1) Ingredients of functional foods (with/without probiotics) (yogurt, ice cream, confectionery, soft drinks, infant formulas, etc)

2) Dietary complement or medical treatment (w/o probiotics)

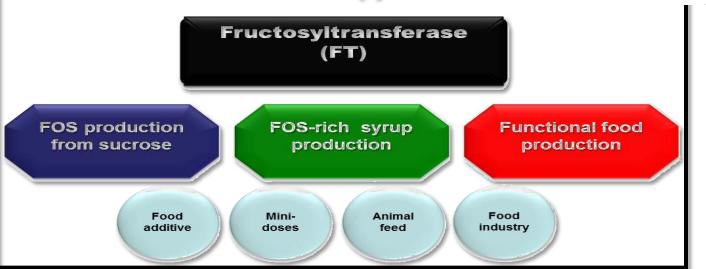
<u>Humans</u>

Minimal effective dose: 5 g/day Average prebiotic dose: 5-10 g/day

Digestive tolerance: >40 g/day

100g \$7.05

140g \$15


1/2-1 tea spoon 2-4 times a day

The CIGB technology permits:

- **4 High FOS yield** ($GF_2 \ge 50\% + GF_3 \sim 5\%$)
- Concentrated reaction (initial sucrose 55-60°Bx)
- Conversion factor (0.55 kg FOS / kg sucrose)
- **High specific activity** (≥ 1000,000 u / L of culture)
- High productivity (275 kg FOS / L FT/day)
- Short-time reactions (20 h, 2 u/g de sucrose)
- Operation at 30-40°C, pH=6
- Large-scale supply of enzyme from JV.

FT Potential Applications

New CIGB production facilities in Mariel Special Development Zone

