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Abstract—This paper presents the development of air
quality low-cost sensors (LCS) with improved accuracy fea-
tures. The LCS features integrate machine learning based
calibration models and virtual sensors. LCS performances
are analyzed and some LCS variables with low perfor-
mance are improved through intelligent field-calibrations.
Meteorological variables are calibrated using linear dynamic
models. While, due to the non-linear relationship to reference
instruments, fine particulate matter (PM55) are calibrated
using non-linear machine learning models. However, due to
sensor drifts or faults, carbon dioxide (CO,) does not present
correlation to reference instrument. As a result, the LCS for
CO,, is not feasible to be calibrated. Hence, to estimate the
CO, concentration, mathematical models are developed to be
integrated in the calibrated LCS, known as a virtual sensor. In
addition, another virtual sensor is developed to demonstrate
the capability of estimating air pollutant concentrations, e.qg.
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black carbon, when the physical sensor devices are not available. In our paper, calibration models and virtual sensors

are established using corresponding reference instruments

that are installed on two reference stations. This strategy

generalizes the models of calibration and virtual sensing which then allows LCS to be deployed in field independently
with a high accuracy. Our proposed methodology enables scaling-up accurate air pollution mapping appropriate for

smart cities.

Index Terms— Air quality, low-cost sensors, calibration, virtual sensors, machine learning.

~_ |. INTRODUCTION o
IR pollution is a worldwide problem having impacts on

both local and global scales. According to the World
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Health Organization (WHO), air pollution causes 7 million
deaths every year, with 4.2 million attributed to exposure to
outdoor air pollution [1], [2]. In urban areas, air pollutant
is a mixture between local emissions (such as anthropogenic
emissions) and those being transported over a regional scale
(such as mineral dust). Typically, air pollution measurements
are performed by monitoring stations network, which consists
of accurate air quality monitoring setup. Such monitoring
station network is expensive that make it difficult to densely
deploy them within urban areas [3]. Therefore, new methods
are needed to provide high spatial resolution of air quality
monitoring without losing the accuracy. Recently, low-cost
sensors (LCS) have evolved as a promising solution with
affordable price [4]-[6].

However, data quality of the LCS remains a major issue that
hinders the widespread of LCS implementation. Therefore,
many research on LCS have dedicated their studies on devel-
oping in-field sensor calibration [7]. For example, LCS cali-
brations were carried out for improving the sensing variables
of Carbon monoxide (CO) [8], Carbon dioxide (CO;) [9],
Nitrogen dioxide (NO;) [8], Sulfur dioxide (SO») [8], Ozone
(03) [8], [9], particulate matter smaller than 10 um (PMjo)
and particulate matter smaller than 2.5 um (PMj5) [10], [11].

For more information, see https://creativecommons.org/licenses/by/4.0/
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The methodology of integrating sensors calibration and virtual

In addition to developing LCS calibration methods,
proxies have gained research momentum in air pollution
research. A proxy can be defined as a mathematical model
that estimates an air pollutant using other available measured
variables [12]. The deployment of air pollutant proxy is
beneficial to forecast air pollution level [13], to fill missing
data from air quality database, and to substitute instruments
that are typically expensive and complex in operations [14].
Proxies have been developed to estimate different air pollutant
variables such as PMjq [15], [16], PM5 5 [15]-[17], CO [16],
[18], NO; [16], [19], SO, [16], [20] and O3 [14], [16], [21].
With regard to CO;, and BC, several proxies were also devel-
oped. For example, Deleawe [22] predicted the level of CO,
using proxies. The study in [23] aims to demonstrate the use of
machine learning methods in predicting ambient CO;. Other
research also attempt to develop proxies for estimating BC
indoors and outdoors using regression analysis [24], [25] and
machine learning methods [12], [26], [27].

Nevertheless, air pollutant proxies can also be integrated
into LCS. Indeed, LCS sometimes cannot be calibrated,
because the sensors’ drifts and errors lead to missing data or
poor measurements performance. In this situation, calibration
methods may not be the best solution for improving LCS
accuracy. An alternative solution is to develop virtual sen-
sors. Virtual sensors can be defined as air pollutant proxies
which can be integrated into LCS by using inputs from LCS
measurements after calibration. Indeed, virtual sensors can be
developed alongside the deployment of LCS.

The integration of LCS calibration and virtual sensors can
be defined as integrated LCS. Figure 1 depicts the process
of developing integrated LCS which proposes a promising
solution for two key research questions: (1) how to calibrate
LCS in the field and (2) how to extend the operation of LCS to
monitor additional air quality indicators that are not measured
directly by these LCS. To answer these two questions, in this
paper we suggest a novel method of integrated LCS embedded
with the features of intelligent calibration and virtual sensors.
We demonstrate the success of this method by utilizing air
quality data monitored by two state-of-the-art stations and
four LCS.

Il. METHODOLOGY

Figure 1 illustrates our proposed methodology for inte-
grating LCS calibration and virtual sensors. Step 1 presents

sensing systems. Here, a database is established using continu-
ous measurements of LCS (which undergo laboratory calibra-
tion) and reference instruments installed in reference stations.
This step will be described in section III. Data analysis is
performed in Step 2 to get insights about the environment
including air pollutant and meteorological characteristics. LCS
data analysis is also carried out to understand the sensors
performance in terms of consistency between other LCS units,
and accuracy compared to reference instruments. This step
will be explained in Section IV. Based on the data analysis,
decisions can be made if LCS require calibrations or virtual
sensing. Step 3 demonstrates developing calibrations and vir-
tual sensors which will be described in sections V and VI.
Finally, Step 4 presents the implementation of integrated LCS.

We demonstrate the approach of calibration for fine par-
ticulate matter PM» 5, which is one of the air quality index
component [28]. Air quality index refers to pollution degree
of air quality in an easy-to-understand way for public. We will
demonstrate the approach of virtual sensors for carbon dioxide
(CO») and black carbon (BC) monitoring. In this case, LCS
for CO, cannot be calibrated due to sensor drifts or faults
whereas LCS for BC is not yet available. Furthermore, these
variables are air pollutants that are harmful to human as well
as environment [29], [30] and they are also known to have key
impacts on the climate change [31].

In a nutshell, contributions of our methodology, presented
in this paper include installing four identical LCS on two
highly accurate reference stations over 15 months for data
collection; capturing seasonal variations; allowing LCS to
be validated between different units (cross-units validation)
and between different sites (cross-sites validation); enabling
analysis of LCS consistency and accuracy, leading to decision
making in establishing calibrations or virtual sensing. Another
contribution pertains to LCS Sensitivity analysis that permits
investigating a variety of LCS calibrations based on machine
learning methods and allowing method selection (by model
generalization) for sensor calibration and virtual sensors.
Finally, we integrate the results of intelligent LCS calibrations
and virtual sensors that demonstrate promising performance.

I1l. SENSING SYSTEMS
The sensing systems which are used to perform air quality
measurements are shown in Figures 2(a), 2(b), and 2(c). The
locations of these sensing systems are shown in Figure 2(d).
In the followings, we explain these sensing systems in detail.

A. Reference Monitoring Stations

This work uses two state-of-the-art monitoring stations,
located in Helsinki city, as reference monitoring stations. They
are called SMEAR and supersite Mikeldnkatu.

1) SMEAR: Station for Measuring Ecosystem-Atmosphere
Relations (we denote as K) is a station to measure the
relationship between atmosphere and forest in boreal climate
zone for research and scientific exploration [33]. In our study,
we use that data at SMEAR III, which is an accurate reference
urban air quality monitoring station. This station is located at
Kumpula campus of the University of Helsinki in the front
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(a) Mikelédnkatu reference
station [32].

(b) SMEAR III reference station
in Kumpula.
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Fig. 2. Sensing systems used in our experiment. In (d), red triangle, yellow rectangle, and white circles refer to SMEAR Il (KC), Mé&kelankatu (M),

and low-cost sensors, respectively.

open yard and about 4 kilometers north-east from Helsinki
center. SMEAR III is also located at 26 meters above sea
level on a rocky hill. SMEAR III air quality sensing site is
suburban and distinct surface covers built, car parking, road,
and vegetation areas. The site is situated at about 150 meters
from a main street in Kumpula district in Helsinki [34]. The
SMEAR IIT hosts a suite of trace level gas phase pollutant
measurements and the eddy covariance systems in the 31 meter
mast. The station is accompanied with the gas and aerosol
sensors provide data on fluxes of air pollutants.

To conduct our research, we utilize the data obtained
from various reference instruments installed in SMEAR III.
These reference instruments measure temperature (Platimun
resistance thermometer Pt-100), relative humidity (Platimun
resistance thermometer and thin film polymer sensor Vaisala
DPA500), PM35 (Thermo TEOM 1405-D), CO, (Picarro
G1301 Analyzer) and BC (MAAP Thermo Scientific 5012).

2) Mékeldnkatu: Supersite monitoring station (we denote
as M), operated by Helsinki Region Environmental Services
Authority (HSY), is known as street canyon and located just
beside Mikelidnkatu street, which is one of the arterial roads,
in Helsinki. The street is lined with apartment buildings. The
street consists of six lanes, two rows of trees, two tramlines
and two pavements, in a total 42 meters of width. Everyday,
different types of vehicles such as cars, busses, truck cross in
this street which cause frequent traffic congestion [35]. The
volume of traffic causes a high level of pollution including
PM;,5s and BC. For our study, the reference instruments
which we used from this station measure temperature and
relative humidity (Vaisala WXT536), PM, s (Thermo TEOM
1405), CO, (LICOR LI-7000) and BC (MAAP Thermo
Scientific 5012).

B. Low-Cost Sensors (LCS)

The LCS used in our experiment are developed by Clarity
corporation, a company that is based in Berkeley, California,
USA. Currently, the company has installed many low-cost sen-
sors in several mega-cities across the world. Figure 2(c) shows

Clarity sensors installed in the SMEAR III site, Kumpula
district in Helsinki. The weight of the sensor is 450 grams.
The input power of the sensor of 5 volts. In our experiment,
we used grid electricity for sensor’s input power, however,
the sensor is also designed to operate by battery. The battery
life time of the sensor in case of harvesting solar power take
1-2 years and without harvesting solar power is about 15 days
of continuous measurements. The sensors offer sensing meteo-
rological variables including the Temperature (Temp) that uses
band-gap technology and Relative Humidity (RH) which uses
capacitive technology. The sensors also measure particulate
matter (PM) and CO;, with laser light scattering technology
and metal oxide semiconductor technologies, respectively.
The sensors underwent laboratory calibration process, by the
manufacturer, using Federal Reference Method (FRM) instru-
ments. The sensors are equipped with LTE-4G communication
module to transmit the measured data. The transmitted data is
also stored in a cloud platform facilitated by Clarity.! The
platform allows accessing the raw and visualized data. The
data can also be downloaded using a user interface accessible
by SmartCity WebApp.? The measurement frequency of data
varies around 16-23 minutes per data point. Two of these
LCS were installed on the container at the SMEAR III about
2 meters from the ground level. Other two LCS were installed
on Mikeldnkatu air quality sensing station. The LCS located
in Mikeldankatu were installed on the top of container, about
4 meters above the ground level, where sampling inlets of air
quality instruments are placed.

C. Data Collection

The data was collected using four LCS and the reference
instruments while all LCS located at reference stations from
13 March 2018 to 18 June 2019. We constructed an air
quality database (as shown in the first step in Figure 1) by
merging data from all of LCS and downloading relevant data
from the reference stations [36]. In addition, to establish

1 smartcity.clarity.io

2clarity.io/documents
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a synchronized database, due to different time-resolutions
between the measurements of LCS and reference instruments,
we merged all of the data by averaging them on hourly
basis.

There were several short periods of missing data in mea-
surements of LCS as well as reference instruments in the
database. The missing data was due to technical problems
associated with faults in data acquisition, sensor measurements
and communication loss. The longest average of consecutive
missing data from all variables in the database is only 0.0022%
of the total number of data points. From total data points,
the shortest and longest consecutive missing data are 0% and
0.28%, respectively. In such scenario, it is reasonable to inter-
polate the missing data. In our case, we resort Akima cubic
Hermite interpolation method to fill the missing data [37]. This
method is effective in preventing excessive local undulations as
well as accurately connecting the flat regions between missing
data [38].

IV. DATA ANALYSIS

This section explains data analysis of the variables of Temp,
RH, PM; 5, CO»,, and BC. The analysis allows us to develop
appropriate calibration models and virtual sensors using these
variables. A comprehensive analysis, including histogram, cor-
relation and performance metrics calculations, is carried out on
the air quality database to get insights about the environmental
conditions in both stations and the characteristics of measured
variables as well as LCS.

Figure 3 displays histograms of these five variables obtained
from measurements in sites JC and M. Let us recall that the
abbreviations K and M refer to reference instruments located
in SMEAR III (Kumpula) and Mékelédnkatu sites, respectively.
The first row of subplot is temperature histogram, where
the variable ranges between —20°C and 30°C in the whole
year. It can be seen that there is a very small temperature
difference between two reference stations, with the median
values are 7.49°C and 8.4°C for sites K and M, respectively.
The temperature histograms for two sites are also overlapped
between each other, indicating the temperature is almost the
same between these two sites. The second row of subplot refers
to RH histogram. RH between two sites is slightly different:
site }C seems to be more humid than site M.

The last three rows of subplots present histograms for the
pollutants. They demonstrate concentrations of PMj 5, CO»
and BC in site M are frequently higher than site /C, especially
the median of PMj, 5 in site M is almost double than in
site IC. This takes place because site M is near pollutant
sources as described in the subsection III-A. Nevertheless,
from the data analysis and previous studies, Helsinki air
quality is relatively good for most of the time compared to
many other cities around the world [39]. However, this leads
to another challenge in LCS usage. Indeed, LCS is known
to be not sensitive to measure very low-concentration of air
pollutants [40].

Figure 4 displays a matrix plot generated through the
analysis of Pearson correlation coefficient (PCC) in order to
understand the relationships between all relevant measured
variables (i.e., Temp, RH, PM; 5, CO, and BC) obtained from
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Fig. 3. The histograms of environmental variables used in this study,
obtained from reference instruments located in Kumpula 1C, colored by
blue, and Méakelénkatu M, colored by red.

reference instruments as well as LCS. In Figure 4, the bar
plot colour indicates the levels of absolute number of PCC.
The color close to dark blue represents very weak correlations
whereas the color close to yellow represents strong correla-
tions. The notations Kl/c and Mlc denote to LCS installed
in sites K and M, respectively. It can also be seen that
there are two LCS of each variable installed at each reference
station, for example symbolized by Temp (K/c1) and Temp
(Klc2) for units one and two of temperature LCS installed
in site /C, respectively. Therefore, Figure 4 demonstrates all
relationship between the measured variables by LCS (K/c and
MIc) and the reference instruments performed in SMEAR III
and Mikelidnkatu sites (JC and M). It can be seen that the
correlation levels between the same measured variables of LCS
provide almost perfect correlation, except for CO;. The results
demonstrate that all LCS units are consistent if the same units
are compared between each other. The matrix plot can also be
used to understand the accuracy of LCS by comparing them
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TABLE |
THE PERFORMANCE METRICS USED IN THIS STUDY

Performance Metrics Formulation

Mean Absolute Error MAE = M

>0 (Gi—vi)?

n

> (9i—9) (Yi—9)
VI, @i—9)2 /T, (i—9)2

Root Mean Squared Error RMSE =

Pearson Correlation Coefficient r =

against the reference instruments. The results will be used and
discussed in sections V and VI

Another data analysis is by calculating several performance
metrics. Table I summarizes three performance metrics used
for data analysis and performance analysis of calibration as
well as virtual sensors. MAE, called the mean absolute error,
has a simple interpretation as the average absolute difference
between the estimated measurement values and the reference
measurement data. RMSE, called root mean squared error,
is the standard deviation of the estimated errors. r, also known
as PCC, is a measure of the linear correlation between two
variables, estimated measurement values and reference mea-
surement data. In the table, the reference measurement data,
the mean of the reference measurement data, the estimated
data, and the mean of the estimated data are symbolized by
v, ¥, y and 3, respectively. The notations of i indicates the
index of a data point and n refers to the total number of data
points.

Table II presents performance metrics of all variables of
LCS in both site, by comparing them with reference instru-
ments. These metrics are used to describe the overall quality

TABLE Il
THE PERFORMANCE METRICS OF LCS BEFORE FIELD-CALIBRATION
AGAINST THE REFERENCE STATIONS

K M
r MAE RMSE r MAE RMSE
Temp 0.73 4.024 6.695 0.99 1.113 1.753
RH 0.68 11.102  16.176 094  5.556 6.972
PM; 5 0.56 8.640 14.74 0.67 7.8 12.54
CO2 -0.237 14.3 20.135  0.234 1855 27.712

of LCS measurements. While the correlation (r) between
Temp (M) and Temp (Mlc) are almost perfect (r = 0.99),
the Table also illustrates imperfect correlations (r = 0.73)
between Temp (K) and Temp (Klc). Similar results are also
obtained for measured RH for both site, i.e. between M/c and
M (r = 0.94) as well as between Klc and K (r = 0.68).
The results for Temp and RH in K necessitate the need for
calibrations of LCS deployed in site K.

The correlation for PMj; 5 between K and Klc as well as
M and Mlc present lower r values than Temp and RH, that
are equal to 0.56 and 0.67, respectively. Since the perfor-
mance metrics of PM 5 are poorer in general compared to
Temp and RH, more complex calibration methods need to be
developed.

Finally, the variable CO, presents poor correlations between
K and Klc as well as M and MIc with r are equal to —0.237
and 0.234, respectively. This indicates that the measurements
of LCS on both sites do not follow the pattern of reference
instruments measurements. The reason would be because of
sensor drifts or faults. Therefore, the sensor calibrations are
not suitable solution for improving the accuracy of CO»
measurements.
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V. SENSORS CALIBRATION

As shown in Figure 4 and Table II, beside CO,, all LCS
have consistent performance compared with different sensor
units at the same measurement site. Nevertheless, there are
some LCS measurements which need to be calibrated to meet
the data quality at the reference stations. The following sub-
sections describe the development methodology of calibration
models for each measured variable.

A. Meteorological Variables

In this subsection, we discuss the calibrations of variables
Temp and RH from the LCS measurements. As illustrated in
Figure 4 and Table II, LCS measuring these variable which
are located in site M, do not require calibration because,
according to the performance metrics, the readings of these
sensors are reliable. However, the records by LCS for Temp
and RH which are deployed in site K need calibration as
they exhibit lower performance compared with the reference
instruments.

In Figures 5(a) and 5(b), scatter plots demonstrate that the
relationship between the measurements of reference instru-
ments and LCS for Temp and RH in site C shows linear trends

but they do not correlate well. On this basis, we calibrate
the variables of these LCS using dynamic linear models. In
particular, we resort Autoregressive model with Extra Input
(ARX), which has become one of standard tools in linear time-
series modelling [41].

Definition 1: ARX is also known as Auto-Regressive models
with eXogenous variables. The exogenous variable is referred
as the input term. ARX can be defined mathematically as:

A(q)y(t) = B(q)u(t — ni) + e(t) M
where A(q) and B(q) are given by:

A =1+aig '+ +anqg ™ 2)
B(q) = b1g” " 4 -+ by, g T A3)

where the notation e(t) is the Gaussian noise. The notations of
an, and by, are the model parameters. The symbol n, indicates
the order of the polynomials of the output A(q) whereas the
symbols np and ny represent the order of the polynomials of
the input B(q). ¢~ is defined as the shift operator, such as
u(t — 1) = g 'u(t — ny). The notations of u(r) and y(t)
represent input and output, respectively.
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TABLE Il
LCS oF TEMP AND RH AFTER DEPLOYING CALIBRATION
METHOD ON SITE KUMPULA (K)

Site: K
LCS vars: Temp RH
r 0.98 0.90
MAE 1.688 6.430
RMSE 2.285 8.337

In our case, the notation u(¢) represents the LCS output of
Temp or RH before calibration, whereas the notation y(¢) is
the outputs of Temp (Temp) and RH (RH) after calibration.
In order to select the best model configuration, we build
a set of models by specifying n, = [1,2,---,5], nb =
[1,2,---,10] and nk = [1,2,---,5]. In order to find the
best ARX model structure, we compute loss functions for sets
of the specified ARX structures using instrumental variable
method where the ARX model parameters are estimated using
a least-squares method [42]. The ARX calibration models are
trained using the data generated from the reference instruments
as output, y(¢), and LCS (Klc1) of Temp/RH as inputs, u(t).
The trained ARX is then validated using another LCS unit
(Klc2). Through this validation, we ensure that the calibration
model works on different LCS units. This validation strategy
is also known as cross-units validation which will also be
discussed later.

Table III shows the performance metrics of LCS for both
variables after applying the calibration models. The results
of r values have improved significantly to 0.98 and 0.90 for
Temp and RH, respectively. After calibration, the performance
metric of MAE between the reference instruments and LCS,
approximately for Temp is 1.688°C and for RH is 6.430%.
The performance metric of RMSE are 2.285°C for Temp
and 8.337% for RH. These values are much lower than the
median values for Temp and RH in site K, which are 8.4°C
and 71.25%, respectively (Figure 3). This means that our
calibration models have highly improved the measurement
accuracy of the Temp and RH for LCS. In addition to having
accurate meteorological information, the calibrated Temp and
RH of LCS can also be used to further develop calibration
models for other variables as well as for developing virtual
Sensors.

B. PM» 5 Concentration

As shown in Figure 4, the measurements of PM; 5 for all
LCS both sites require calibration. Table II also emphasizes
that the r values of PM, s on both sites are lower than the
r values of uncalibrated LCS of Temp and RH (i.e. site
K). In addition, Table II explains that MAE with values of
8.640 ug/m?> in site K and 7.8 ug/m?> in site M as well as
RMSE with values 8.640 ug/m?> in site K and 12.54 ug/m?>
in site M are considered to be unreliable. This is because
the values of these performance metrics are much higher
than the median values of PM, s concentrations which are
3.173 ug/m> and 6.168 ug/m?, in sites K and M, respec-
tively. Figure 5(c) shows the scatter plot of PM> 5 between the
reference instruments and LCS. The PM, 5 measurements of

LCS do not exhibit linear trends, however, the measurements
still demonstrate correlation to the reference instruments.

Based on these reasons, developing calibration models that
improve the reading accuracy of PM, s of LCS is feasible.
In practice, recently several calibration based on machine
learning models have been developed and tested to improve the
accuracy of PM, 5 readings. The examples of these calibration
models include linear regression (LR) [43], multivariate linear
regression (MLR) [9], support vector machine (SVM) [44],
feed-forward neural-networks (FFNN) [45], [46], time-delay
neural networks (TDNN) and nonlinear autoregressive with
exogenous inputs network (NARX) [47].

In our paper, in order to find an optimal calibration
model, we implement and test these aforementioned cali-
bration models. We also resort ARX and long-short term
memory (LSTM) [48] models. With this investigation, we aim
to test, compare and select the best calibration model to
improve the accuracy of PMj 5 measurements. To establish
these calibration models, in training phase, we use the datasets
obtained from the reference instruments, while for imple-
menting them we use the output of calibrated LCS. In addi-
tion, to estimate PM» 5 concentrations with higher accuracy,
we perform sensitivity analysis to select the best variable
combinations. The sensitivity analysis aims to establish PM3 5
functions (F) consisting of different combination of measured
variables by LCS. To this end, we define four approaches as
followings:

AP1: PMys = F(PMys) “
AP2 : mz.s = f(Tmp, PMZ.S) (5)
AP3 : mz.s = f(m, PM2.5) (6)
AP4: PMys = F(Temp, RH, PM,5s) (7

where, Temp and RH are LCS outputs of Temp and RH
after applying calibration models. PM> s and PM, 5 are the
LCS outputs of PM, 5 variable before and after calibrations,
respectively.

Figure 6 shows the results of sensitivity analysis of PMj 5
calibration using the four approaches (APs) and different
machine learning methods. The symbols x (red), [ (black),
¢ (blue), and o (green) represent approaches 1, 2, 3 and 4,
respectively. The results comprise performance metrics of r,
MAE and RMSE which are validated on four LCS units. K1
refers when training in site KC and testing in the same site.
K2 indicates when training in site C and testing in site M.
M1 describes when training in site M and testing in site k.
M2 refers when training in site M and testing in site M.
Let us also recall that in our experiments, we have used four
low-cost sensors, where we called them Klcl, Klc2, Mlcl,
and Mlc2 as shown in Figure 2(d) and presented in Figure 4.
When applying machine-learning methods, we always train
using one low-cost sensor and test the model on another low-
cost sensors. Table IV summarizes how training and testing
are done.

Through the illustration in Table IV, we demonstrate cross-
units validation and cross-sites validation. Cross-units val-
idation refers to when a calibration model is trained and
tested within the same site between different sensor units.
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TABLE IV
TRAINING AND TESTING USING THE DATA FROM FOUR
LCS UNITS INSTALLED SITES IC AND M

Reference sensors: K M

Kicl  Kic2 Milcl Mic2
K1 train test - -
K2 train - - test
M1 - test train -
M2 - - train test

Low-cost sensors:

For example, for /1 (Table IV), the calibration model is
established using PM; 5 from unit Klc1 and tested on PMj 5
from unit Klc2 in site K. In addition, cross-sites validation
refers to when the calibration model is trained in one site
and tested in another site. For example, for K2 (Table 1V),
the calibration model is established using PM, s from unit
Klicl in site I and tested on PM,s from unit Mic2 in
site M.

Indeed, several conclusions can be drawn from Figure 6.
First, cross-sites validation does not show promising results.
For example, the values of r (M1) for all methods and all
approaches are very low, ranging between —0.02 to 0.02.
Similarly, the values of MAE (M1) and RMSE (M]1) are
very large, ranging between 4-6 ug/m?, and 0-40 ug/m>,
respectively. Second, non-linear models such as NARX shows
a very good performance for cross-units validation but tend to
over-fit on cross-sites validation. For instance, NARX (M2)
depicts very high values for » and very low for MAE and
RMSE. However, this method performs very poor on cross-
sites validation, such as K2 and M1. Other linear methods,
such as MLR, seem to perform better than non-linear methods,
but in general their performance are also very poor for cross-
sites validation. These results indicate that all of the presented
calibration models are not generalized. They do not function
well when they are tested on different sites other than training
sites.

In order to cope with the above problem, we need to
generalize calibration model. We need to start by selecting
one promising result from Figure 6 using metrics from cross-
units validation. In the figure, it can be seen that non-linear
time series models, such as TDNN and NARX, have the best
performance for cross-units validation. In particular, NARX
demonstrates the best performance with the values for r,
MAE and RMSE approximately equal to 0.79, 1.890 ug/m>
and 2.840 pug/m3 for K1 and 0.88, 1.683 ug/m> and
2.301 ug/m> for M2, respectively.

To generalize the model, we train calibration model using
the database from two different sites. When dealing with
static models and concurrent batches of static data, the data
sets can be typically appended together to form one large
concurrent batch. However, using the same strategy would
cause a discontinuity in the data sequence if time sequences
are appended together. Therefore, we create a concurrent set
of input and output sequences to be fed into the NARX model.

Definition 2: NARX is known as Non-linear ARX model.
This model is a part of recurrent dynamic networks which
relates the current value of a time series with the trained and
estimated past values of the inputs (exogenous) series. NARX
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Fig. 7. Scatter plots between reference instruments and calibrated

PM, 5 LCS for sites IC (left subplot) and M (right subplot).

can be expressed mathematically as:

)’(f)=T(y(f—1)a y(t_z)a ’ y(t_ny)a
u(t —1), u(t—2),---, u(t —ny)) (8

where W(.) is a non-linear mapping function of ARX
model. y(t) is the model output at time t. The notations:
Vi—1> Yi=25** s Yi—n, and U1, us—3,---, U;_n, are the
past outputs’ values and the past inputs’ values, respectively.
The symbol ny is the number of input delays whereas the
symbol ny is the number of output delays. The mapping
function Y (-) is initially unknown and it is approximated
during the training process of the prediction.

In our case, the final implementation uses AP4, so that
y(t) is the PMj; 5 concentration obtained from the reference
instrument whereas u(¢) is the inputs of LCS of calibrated
Temp (Temp), calibrated RH (RH) and LCS of PM, 5 con-
centration (PM»s). For non-linear function W(-), we use
a multilayered neural network. Then, our model is known
as NARX neural network, where the internal architecture
that performs this approximation is known as Multi-Layer
Perceptron (MLP) [41], [49]-[51]. The MLP offers a powerful
structure allow to learn any type of continuous nonlinear
mapping [52]. In this work, the best NARX architectures are
found through grid search, even though most architectures do
not lead to significant differences in performance metrics. For
all cases, Bayesian regularization backpropagation [53], [54].
is used for NARX parameters’ estimation to ensure the model
generalization and avoid over-fitting.

Table V shows the results of generalized NARX calibration
model trained on both sites C and M using the data from the
sensor units Klcl and Mlc2. The calibration models are tested
on the other units, i.e., Klc2 and Mlc1, located on the different
sites. The values of r increase significantly to be 0.90 and
0.94 after calibration. The MAE and RMSE values for both
site are about 1 ug/m> and 2 ug/m>, respectively. These
values are much lower than prior to applying calibrations.
The values are also lower than the median values of PMj 5
concentration in sites C and M (as shown in Figure 3),
which are about 3.173 ug/m?> and 6.168 ug/m?>, respectively.
The result demonstrates that the generalized calibration model
performs well on different units (i.e., cross-units validation)
and on both sites (i.e., cross-sites validation).

Figure 7 displays the scatter plots between the reference
instruments and the best calibrated PM, s LCS in sites IC
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TABLE V
NARX TRAINED ON BOTH SITES IS THE BEST PM» 5
MACHINE LEARNING BASED CALIBRATION MODELS

Train Site: Sites £ & M
Test Site: K M
T 0.90 0.94
MAE 1.376 1.102
RMSE 2.019 1.607

25 [pg/m’]

100 L

PM

Jun 16

Reference instrument

Jun 18 Jun 19
Virtual sensor | 2018

Jun 15 Jun 17

Fig. 8. Time series plot for PMs 5 of reference instruments (blue) and
calibrated LCS (red) in site IC, between 15-19 June 2018.

(left subplot) and M (right subplot). The outputs of calibrated
PM; s LCS are almost in agreement with the reference red
line. Figure 8 shows time-series plot for PM; 5 concentration
of reference instruments (blue) and calibrated LCS (red) in site
K, between 15-19 June 2018. The figure depicts that output of
calibrated PM; 5 LCS follows the trend of real PM; 5 measure-
ments obtained from the reference instruments. In conclusion,
the reading of PMj 5 after applying the proposed calibrations
is considered to be highly accurate and reliable.

C. CO2 Concentration

As shown in Table II, LCS for CO, cannot be calibrated
because the performance between the reference instruments
and LCS are very poor using all metrics. In addition,
in Figure 5(d), the scatter plot between the reference instru-
ment and LCS for variable CO; illustrates very poor corre-
lation. This takes place due to the sensors’ drifts or faults.
Therefore, to improve such poor correlation, in this paper
we develop virtual sensors to estimate CO, concentration
using calibrated LCS outputs. In next section, we discuss our
approach for developing virtual sensors.

D. Remarks

NARX has been used extensively in many applications [55].
In air pollution related research, NARX has been used for
sensors calibration [47] and air pollutants forecasting [56].
Due to these reasons and our Sensitivity analysis, in the rest of
our paper, we will use NARX implementation for developing
virtual sensors as we used it for calibrating PM; 5. We will
also establish generalized NARX model which should work
across different sites. As the main target of this study is
not investigating the algorithms of calibration and virtual
sensing, but our main objective is in developing and pre-
senting the methodology of integrated LCS. We state that
other machine learning methods may also work better on
different cases, datasets and implementation. Nevertheless, our
proposed methodology is applicable to any machine learning
method as calibration models and virtual sensors.

VI. VIRTUAL SENSORS

The development of virtual sensors are indeed necessary
when calibrations are not adequate to provide reliable air

quality data or physical sensor devices are not available.
Virtual sensors can be developed by applying machine learning
methods using reliable and accurate datasets from reference
instruments. Once the trained virtual sensors have been estab-
lished, they can be implemented by using inputs from cali-
brated LCS outputs. The virtual sensors can be implemented
in computing centers known as cloud or even they can be
embedded in LCS hardware. In this fashion, virtual sensors can
be utilized in fields independently anywhere from reference
stations.

Our methodology of integrated LCS calibration and virtual
sensors is illustrated in Figure 9. The top sub-figure illustrates
the models’ development of calibration and virtual sensors.
In the development phase, to establish the calibration models
(i.e. Temp Cal, RH Cal, P M; 5 Cal), we use the measurements
data obtained from LCS (before calibration) and the reference
instruments. The models of virtual sensors (i.e. CO and BC
VS) are established by only using the measurements data
obtained from the reference instruments. The established cali-
bration and virtual sensors’ models are then deployed in LCS
shown in the bottom sub-figure. In this case, LCS measure
three variables of Temp, RH and PM5 5. In the deployment
phase, LCS outputs of Temp and RH are calibrated first using
the models of Temp Cal and RH Cal, established previously
in the top sub-figure. PM» 5 output is then calibrated using the
model P M, 5 Cal, established in the top sub-figure, by taking
additional inputs from calibrated Temp (Temp), calibrated
RH (RH). Next, all calibrated LCS outputs are fed to the
established virtual sensors’ models (i.e. CO, VS and BC VS)
in order to estimate CO; and BC concentrations. It is worth
noting that the proposed methodology illustrated in Figure 9 is
generic, other air pollutants and meteorological variables can
also be calibrated, estimated and integrated using this scheme.

In order to demonstrate the usefulness of virtual sensors
(as depicted in shown in Figure 9), in this section we present
two virtual sensing of variables CO, and BC. The first
virtual sensing aims to estimate CO» concentration when the
sensor cannot be calibrated. Second virtual sensing estimates
BC concentration when the measurement of variable is not
typically available on LCS [12], [57].

In this paper, we use similar NARX implementation to
develop these virtual sensors, as described in subsection V-D.
To establish virtual sensors, in training phase, we use the
datasets from the reference instruments, while in implemen-
tation phase we use the output of calibrated LCS. However,
virtual sensors can also use outputs of other virtual sensors
as their inputs. To estimate CO, and BC concentrations using
virtual sensors, we define the following functions (F) with
different combinations by defining approaches (AP 5-8):

APS: CO» = F(Temp, RH, PM»s) )
AP6: BC = F(Temp, RH, PM»s) (10)
AP7: CO» = F(Temp, RH, PM»s, BC) (1)
APS: BC = F(Temp, RH, PMas, CO») (12)

where the notations of Temp, RH and PM,s are the
calibrated outputs for Temp, RH and PMj5; from LCS.
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Fig. 9. The development (top sub-figure) and deployment (bottom sub-figure) of integrated low-cost sensors with calibration and virtual sensor

features.

TABLE VI
VIRTUAL SENSORS OF CO» AND BC USING GENERALIZED
NARX MODELS FOR APS 5-8

Train Site: K-M
Test Site: K M
r MAE RMSE r MAE RMSE
co AP5 092 20935 4789 092 2498 4797
2 AP7 091  3.046 4933 091 2746 5.115
BC AP6 0.81 0219 0.406 090 0.141 0.289
AP38 0.79 0.248 0427 086 0202  0.342

652 and BC are the outputs of virtual sensors of CO; and
BC, respectively.

As in the case of PM; 5 calibration models, we adopt the
generalized NARX method by training the model from both
sites K and M. Then, we use the same NARX structure
and optimization methods for all approaches. Table VI shows
the results for our virtual sensors deployment. All results are
generated using the deployment of generalized NARX model.

From the table, we observe that r values of CO; are higher
than 0.9. The r values for BC virtual sensors are in average
of 0.8 and 0.88 at sites KC and M, respectively. The MAE and
RMSE values for both virtual sensors are also in agreements
with the results of r. The average values of MAE and RMSE
of CO, virtual sensors for both sites are approximately at
2.81 and 4.91 part per million (ppm). These values are far
less than the median values of CO; concentrations in sites
K and M which are equal to 417.88 ppm and 420.70 ppm,
respectively. The conclusion is that the values of these metrics
can be considered to be excellent.

500 8
480 .
E) o o =6
Z 460 condd.C < -
— g 5 &0 =
B 440 o 5.0 =
g " g N oo & oo
[ , = @ c [S 2.
= 420 0 £ | ©
I} I o @ O
- o 2lg
~ 400 A O H ©
v
380 0 O -
400 450 500 0 2 4 6 8
CO4 (K) [ppm] BC (K) [pug/m?]
500 = 8
o724
480 o o 7 o
T o © 00 A T 5
& 460 & S 00 zi - o
& 440 o =l o lg 08
= )] I e O Y A
Iy c o X (_'/C’ (o¥e}
=420 £ b (ol
o & g .
S ; S o2k :
~ 400 - A - o
O
380 o 8
400 450 500 0 2 4 6 8
CO;y (M) [ppm] BC (M) [pg/m?]

Fig. 10. Scatter plots between reference instruments and CO» virtual
sensors (left subplots) and BC virtual sensors (right subplots). Top
subplots refer to site KC (left subplots) and bottom subplots refer to
site M.

Similarly, the mean values of MAE and RMSE of BC
virtual sensors for both site are around 0.203 ug/m> and
0.366 ug/m3. As the median values of BC concentrations
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Fig.11. Time series plot for CO» (top subplot) and BC (bottom subplot) of
reference instruments (blue) and virtual sensors (red) in site 1C, between
15-19 June 2018.

in sites K and M are 0.3 ug/m> and 0.3550 ug/m?3, respec-
tively. Therefore, the values of these metrics can be considered
to be satisfactory. From the table, almost all performance
metrics indicate that AP5 and AP6 are the best virtual
sensors for CO, and BC, respectively. Whereas, AP7 (for
CO;) and AP8 (for BC) show slightly worse results, because
they propagate the modelling errors of LCS calibration and
virtual sensors.

Figure 10 shows the scatter plots between the reference
instruments and CO; virtual sensors (left subplots) and BC
virtual sensors (right subplots) in sites K (top subplots) and
M (bottom subplots). The results for both virtual sensors
in both sites are in agreement with the red reference lines.
Figure 11 illustrates time-series plots for CO, (top subplot)
and BC (bottom subplot) of reference instruments (blue) and
virtual sensors (red) in site C, between 15-19 June 2018.
This figure confirms that both virtual sensors track well the
measurement of CO, and BC concentrations obtained from
reference instruments. These results prove that the virtual
sensors implemented on LCS behave similar to the reference
instruments. Therefore, the performance of the virtual sensors
are satisfactory.

VII. DISCUSSIONS AND FUTURE WORKS

A. Discussion

The development and applying efficient calibration models
and virtual sensors require addressing the deployment, applica-
tions and public usage, where we briefly discuss in this section.

1) Deployment: In order to enable the deployment of inte-
grated LCS independently from reference instruments, the
models of calibrations and virtual sensors can be embedded
into LCS hardware or they can also be deployed in any
cloud platforms. The former is advantageous in independent
deployment without needing Internet and data communication.
The latter can be realized through an Internet of Things (IoT)
platform by equipping it with a software. This allows model
updating mechanism, where the models can be monitored and
updated conveniently if necessary. In addition, the LCS drifts
and faults can be monitored and maintained. The LCS IoT
platform also offers integration between LCS database and
local meteorological data centers. As a result, the deployment

of LCS can be scaled up realistically in a large quantity to
provide high resolution and accurate air quality information.

2) Public Usage: Air quality indexes (AQI) are typically
used by government agencies to inform public about the air
quality information [58]. AQI gives an overall characterization
of actual air quality due to the involvement of several air pol-
lutants in the calculation. In addition, the list of air pollutants
is not limited to only PM; 5 but include other variables such as
SO,, NO, NO;, PMjp and O3 concentration [59]. Therefore,
to realize the AQI for public usage, our proposed integrated
LCS methodology can be implemented for estimating those
variables. This can be performed either by adding more
LCS sensing (to be calibrated), or by virtual sensors or by
integrating both as suggested in this paper. More simplification
can also be made by describing the air quality in simple terms
(e.g. good, satisfactory, fair, poor, very poor) and an easy-to-
understand color scale [60].

3) Applications: In addition to scaling-up air quality map
outdoors, reliable LCS is beneficial when they are deployed
indoors such as public transports, houses and deep cave mining
environments, due to the fact that an individual spends more
than 90% of their time indoors in average [61]. Moreover,
the proposed integrated LCS is beneficial once upgraded to
function as an IoT platform, therefore massive big data can be
gathered and analyzed. This helps improving the environment
and health related issues [62]-[64], productivity and life-style
study, traffic management, and emissions control [65], [66].

B. Future Works

As future works, we plan to embed our proposed methods
into the LCS hardware. The field deployment of LCS hardware
is challenging due to several factors. First, LCS requires stable
and constant electricity for powering the hardware. In order to
minimize the energy consumption of LCS, we plan to reduce
the physical sensing devices by substituting them with virtual
sensors [67]. In addition, we plan to perform experiments
to investigate the most efficient data sampling frequency for
different measurements. We also aim to investigate energy
harvesting methods such as harvesting energy from the sur-
rounding environment for perpetual operation [68].

Second challenge relates to establishing reliable data com-
munication between the LCS and the cloud platforms [69].
In our future studies, we will investigate the network reliability
and LCS energy consumption using different communication
technologies such as LTE-4G, NB-IoT, and the upcoming 5G
networks [70].

In a separate research, we will study the impact of envi-
ronment on LCS which are deployed in field for long-time.
For example, we will investigate the impact of temperature,
humidity and the direct sunlight exposed on the LCS to
identify the reasons for malfunctioning LCS. The findings can
be used to improve functional design and implementation of
a complete LCS platform [71].

Calibration and virtual sensors might drift due to environ-
mental changes or sensors degradation. For example, if pollu-
tion level deteriorates after the models were developed, these
models may not be accurate anymore. Therefore, next we will
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develop concept drift detection [72] to monitor if the devel-
oped calibration models and virtual sensors are still accurate
and reliable. If the models were found to be inaccurate, we will
apply online-adaptive models.

Moreover, we plan to integrate the impact of other factors
such as wind speed [25], land use, and mobility density to our
calibration and virtual sensor models to improve the urban air
quality estimation. Last but not least, we will estimate more
air pollutants involved in AQI, including SO,, NO,, PMjo,
PMj; 5, O3 and CO. This can be realized through LCS hardware
extension or incorporating more virtual sensors. Therefore,
using massive LCS measurements which will lead to AQI,
we aim to provide reliable air quality information with high
accuracy and resolution to the public in smart cities.

VIIl. CONCLUSION

In this paper, we present integrated air quality low-cost
sensors (LCS) with intelligent calibration and virtual sensing
features. This work utilizes more than a year of air quality
data sets obtained from reference stations and LCS, installed
in those stations. All LCS are consistent, validated between
each other in the same measurement site. However, most
LCS for measuring meteorological and PM; 5 variables have
accuracy issues, and thereby they require in-field calibration.
Meanwhile, LCS measurements of CO, does not present any
correlation with the reference instruments due to the sensor
drifts or faults. Hence, CO, calibration is not feasible. In addi-
tion, virtual sensors can also be developed when physical LCS
measurements are not available. On these bases, we demon-
strate that CO, and BC concentrations can be estimated using
virtual sensors.

Datasets from the reference stations are used to establish
calibration models and virtual sensors. They are then tested on
LCS devices. Due to their linear relationship to the reference
instruments, Temp and RH are calibrated using dynamic linear
models, such as Auto-Regressive models with eXogenous
variables (ARX). However, PMj 5 needs calibration using
more complex models due to non-linear relationship to the
reference stations. In this case, through performing sensitivity
analysis, calibration models tested in our paper perform well
only in the training site, where NARX (Non-linear ARX) is
found to be the best calibration model. Therefore, NARX is
then generalized by training it with datasets from two reference
stations, simultaneously.

The generalization method improves the performance of
LCS in measuring PMj 5 close to the reference instruments in
both sites. Moreover, we continue using generalized NARX to
demonstrate development of virtual sensors for variables CO»
and BC. The results indicate that our virtual sensors estimate
CO, and BC concentrations with a satisfactory accuracy,
without needing real physical sensors for those variables.

In summary, we propose a generic methodology of inte-
grated LCS calibration and virtual sensors, which allows
estimating different air pollutants accurately. Any physics-
based models or any machine learning methods can be imple-
mented into this methodology. Implementation of the proposed
integrated LCS enables independent deployment to produce
highly accurate air quality spatio-temporal information.
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